Databricks Platform
/tldr: The only place serious companies run Spark in 2025
Unity Catalog
Delta Live Tables
Jobs
Lakehouse
2025
2025 LAW
Databricks + Unity Catalog + DLT
= End of data engineering pain
= End of data engineering pain
The 2025 Databricks Stack
Bronze
Raw ingest (Kafka, files)
Silver
Clean + conformed + DLT
Gold
Aggregates + BI + ML
Unity Catalog (Your New DB Admin)
What It Gives You
- Cross-workspace tables
- RBAC + ABAC
- Table → Column → Row-level security
- Time travel + governance
- Delta Sharing
Never Do Again
- Hive metastore
- dbutils.fs mounts
- Hardcoded paths
- Manual grants
Delta Live Tables (DLT) = Write SQL/Python → Get Production
import dlt
@dlt.table(comment="Raw JSON → cleaned")
def bronze_events():
return (spark.readStream.format("kafka")... )
@dlt.table
@dlt.expect_or_drop("valid_id", "id IS NOT NULL")
@dlt.expect_or_fail("valid_ts", "event_ts > '2020'")
def silver_events():
return (dlt.read_stream("bronze_events")
.withColumn("date", to_date("event_ts"))
.dropDuplicates(["id", "event_ts"])
)
# One click → continuous or triggered pipeline with monitoring, lineage, alerts, retries
DLT = Spark code that never breaks in production
Jobs — The Correct Way
Use Workflows
Multi-task, dependencies, alerts
Task Parameters + Widgets
One job → all envs
Job Clusters or Serverless
No more shared clusters
Secrets → Unity Catalog + Azure Key Vault / AWS Secrets Manager
# Correct way 2025
spark.conf.set("fs.azure.account.key.my.dfs.core.windows.net",
dbutils.secrets.get("unity-catalog-scope", "storage-key"))
FINAL ANSWER:
Databricks + Unity Catalog + DLT
= The only way to build data platforms in 2025
Everything else is legacy.